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We present a high-resolution x-ray study of the effects of disorder induced by random cross-linking side-
chain smectic elastomers. The influence of variation of the concentration and stiffness of the cross-link units on
the disruption of the one-dimensional translational order is reported in detail. Precise analysis of the line shape
of the quasi-Bragg peaks associated with the smectic layering indicates a transition from algebraic decaying
ordering to disorder. The smectic line shapes can be described by the Caillé correlation function convoluted
with a finite-size factor represented by a stretched Gaussian �compressed exponential�. The transition to
disorder is signaled by a change in the exponent of the stretched Gaussian from 1 �simple Gaussian describing
finite-size domains� via 0.5 �Lorentzian describing exponentially decaying short-range correlations� to �0.5
�stretched exponential correlations�. For a flexible cross linker the changeover occurs for concentration be-
tween 0.15 and 0.20, for a stiff cross linker below about 0.10. Broadening of the higher harmonics of the x-ray
peak indicates strong nonuniform strain within finite-size domains and local deformations induced by ran-
domly distributed dislocations.
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I. INTRODUCTION

The effect of randomness and disorder in condensed mat-
ter remains an intriguing and challenging problem, relevant
to physical systems containing either specific types of defect
or placed in a random environment �1�. Examples are rather
different and include the pinning of an Abrikosov flux vortex
lattice by impurities in superconductors �2�, disordered Ising
magnets �3�, superfluid transitions of He4 in a porous me-
dium �4�, and phase transitions in smectic liquid crystals in a
random confinement �5�. Regarding the first example Larkin
�6,7� predicted that at large enough length scales even a
weak random field should destroy translational order below
four dimensions, resulting in exponentially decaying posi-
tional correlations. Later work �8� recognized that the effect
of the disorder was overestimated and that quasi-long-range
order can survive �positional correlations decaying algebra-
ically at large distances�. This latter property is similar to the
behavior of solids in two dimensions as well as of the layer
correlations in smectic liquid crystals �LC� �9�. Monomer
and polymer smectic LC phases consist of stacks of liquid
layers in which thermally excited fluctuations cause the
mean-squared layer displacements to diverge logarithmically
with the system size �Landau-Peierls instability� �10,11�. As
a result the positional correlations decay algebraically as r−�,
� being small and positive, and the discrete Bragg peaks
change into singular diffuse scattering with an asymptotic
power-law form �12�. This type of anisotropic line shape was
first observed in low-molecular-mass thermotropic smectic
phases by Als-Nielsen et al. �13� and then also for lyotropic
lamellar phases �14–16�, smectic polymers �17�, and lamellar
block copolymers �18�. Quenched disorder has been intro-

duced in smectic monomer systems by confinement in the
voids presented by the connected filaments of an aerogel or
alternatively by dispersion of hydrophilic aerosil. Even at
very low density of the aerogels or aerosils �about 1%–3%�
the one-dimensional �1D� smectic order is destroyed and per-
sists only locally on a length scale of the order of 100 nm
�5,19–21�. This behavior is in agreement with general theo-
retical predictions that any quenched disorder should do so,
no matter how weak �22,23�.

In the present work we consider smectic elastomers in
which disorder is introduced by the random network of cross
links. Liquid crystalline order and polymer properties can be
combined by attaching mesogenic molecules to a polymer
backbone via flexible linkages �side-chain LC polymers�.
The backbone polymer—in turn—can be weakly cross
linked to form an elastomer. The macroscopic rubber elastic-
ity introduced via such a percolating network interacts with
the LC ordering field �24�. In nematic elastomers orienta-
tional transitions driven by the soft rubber elasticity lead to
forms of mechanical instabilities and orientational memory
effects. Interestingly, their shape varies parallel to the chang-
ing levels of the nematic �orientational� order �25�. In smec-
tic LC elastomers �see Fig. 1� the layers cannot move easily
across the cross-linking points where the polymer backbone
is attached. Consequently layer displacement fluctuations are
suppressed, which effectively stabilizes the 1D periodic layer
structure �26,27�. In agreement with these predictions rein-
statement of true long-range order has been observed upon
cross linking �28�. On the other hand, the cross links provide
a random network of defects that could destroy the smectic
order �29,30�. Thus, in smectic elastomers two opposing ten-
dencies exist: the suppression of layer displacement fluctua-
tions that enhances the translational order and the random
quenched disorder that leads to a highly frustrated equilib-
rium state. In a preliminary report we demonstrated both
tendencies �31�: Upon increasing the cross-link density, after
an initial small decrease �ordering� the width of the quasi-
Bragg peak corresponding to the layer structure strongly in-
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creases �disordering�. Finally, at about 20% cross links, ex-
tended short-range order developed.

In this paper we report measurements that reveal in some
detail the subtleties of the process of increasing disorder in
smectic elastomers. The transition to disorder is reflected in
the x-ray line shape by a change in the exponent of a
stretched Gaussian from 1 �simple Gaussian describing
finite-size domains� via 0.5 �exponentially decaying short-
range correlations� to �0.5 �stretched exponential decay�. In
addition the width of the smectic quasi-Bragg peak increases
with the harmonic number. This behavior does not follow the
general line of theories of quenched random disorder �in con-
trast to confined smectic monomer systems�, but rather
points to considerable nonuniform internal strain within the
smectic domains due to defects of the 1D lattice.

II. EXPERIMENT

Smectic-A �Sm-A� polysiloxanes �Fig. 2� were synthe-
sized as described elsewhere �32�. The average degree of
polymerization was about 250 with a broad distribution typi-
cal of a polycondensation reaction. Both types of compounds
�types I and II� contained as mesogenic groups benzoic acid
phenylesters �R1, R2� and a cross-linking agent �R3�. Type II
differed from type I by the presence of a second mesogenic
group �R2�. In the following discussion we consider them as
essentially one system. The standard cross link was a bifunc-
tional nonmesogenic hydroquinone derivative �V1�; in addi-
tion a stiffer cross link V8 was used. The elastomers and/or
polymers were studied in the Sm-A phase at room tempera-
ture, well below their smectic-isotropic transition around
65 °C−75 °C �depending on cross-link density�. The Sm-A
phase was identified through a set of sharp �00n� quasi-

Bragg peaks along the layer normal at a wave vector qn and
a broad liquidlike peak from the in-plane short-range order.
Oriented elastomer samples �typically 40�10 mm2 and 0.5
mm thick� were obtained through uniaxial deformation dur-
ing the cross-linking process. This determined the long di-
rection of the sample �coinciding with the smectic layer nor-
mal� which was fixed during the completion of the network.
Homopolymer films were prepared at temperatures close to
the smectic-isotropic transition by moving a spreader over a
glass substrate to give films a thickness of about 100 �m
and a mosaic distribution of the layer normal �1.5°.

The experiments were performed at the Exxon beamline
X10A at the National Synchrotron Light Source, Brookhaven
National Laboratory, using 8 keV radiation �wavelength
�=0.155 nm�. To observe the power-law singularities of the
smectic structure factor S�q���qz−qn�−2+n2�, the x-ray setup
should be used at high resolution, capable of measuring
length scales of the order of micrometers together with a
steep fall-off of the tails of the resolution function �13�.
These requirements were fulfilled by a diffractometer
equipped with a double-bounce Ge�111� monochromator and
a triple-pass channel-cut Ge�220� or Si�111� analyzer crystal.
In practice the tails fall down according to ��qz−qn�−4.5 at
small deviations from the Bragg position and ��qz−qn�−3

further away. The wave-vector transfer is given by
q=k f −ki, where k f and ki are the outgoing and incoming
wave vector, respectively, with q= �q�= �4� /��sin 	, 2	 be-
ing the scattering angle. The scattering plane �z ,x plane� was
vertical with the qz axis parallel to the smectic layer normal.
Hence the quasi-Bragg peaks were measured in reciprocal
space along qz while the mosaic distribution was determined
by transverse �rocking� curves varying qx at different qz=qn.
The resolution function in the scattering plane was close to a
Gaussian with 
qz=0.003 nm−1 �full width at half-
maximum �FWHM��. The resolution function along the qx
direction was an order of magnitude narrower and could be
taken as a � function. Hence the peak width in this direction
was directly due to the mosaic distribution � giving

qx�qn�. Out of the scattering plane the resolution was set
by slits to 
qy =0.02 nm−1. The incident intensity was about
5�109 cts /s; the beam size was 0.5�1 mm2 �V�H�. All
data were normalized, resolution corrected, and background

FIG. 1. Schematic picture of a smectic side-chain elastomer.
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FIG. 2. Chemical structures. Elastomer type I has X=Y =R2;
type II has X=R1 �45%� and Y =R2 �55%�. The cross-link R3 is
primarily given by V1; alternatively by the more rigid V8.
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subtracted. The latter point is a crucial aspect for the present
precise line-shape measurements including the tails of the
peaks. In particular it requires separate consideration of the
q-dependent spatial background in the hutch and the time-
dependent dark current of the scintillation counter.

III. MODELING

A. Theoretical background

The elastic free energy of a smectic system is concerned
with the layer displacement field u�r�=uz� ,z� along the
layer normal z. A conventional smectic with liquid layers has
no resistance to shear, and a term ���u�r��2 is not allowed in
the deformation energy. Only higher-order contributions
��
�u�r��2, corresponding to layer curvature, are energeti-
cally penalized. As a result in the long-wavelength limit
q→0 fluctuation modes have a large amplitude. In the har-
monic approximation the equipartition theorem gives for
each mode of layer displacement u�q� the mean-square value

�u2�q�	 =
kBT

Bqz
2 + Kqxy

4 . �1�

Here u�q� is the Fourier transform of the layer displacement
field, the elastic moduli K and B describe bending and com-
pression, respectively, of the smectic layers, kBT is the ther-
mal energy while the subscript xy refer to in-plane directions.
As a result the mean-square fluctuations diverge logarithmi-
cally with the system size L according to

�u2�r�	 =
kBT

8�
KB
ln�L

d
� . �2�

This expression can be contrasted with the finite amplitude
of mean-squared fluctuations in a three-dimensional solid
that take the form

�u2�r�	 =
kBT

�aC
, �3�

in which C is a typical elastic constant and a is a lattice
dimension.

For a smectic liquid crystal the structure factor S�q� de-
termining the scattering is related to the layer correlation
function Gn�r� by

S�q� � d3rGn�r�exp�i�q − qn� · r� , �4�

in which

Gn�r� = �exp�iqz�u�r� − u�0���	 . �5�

In the harmonic approximation this can be written as

Gn�r� = exp�−
1

2
qn

2��u�r� − u�0��2	� . �6�

The pair-correlation function describing the algebraic decay
typical for the layer structure of a smectic liquid crystal has
been given by Caillé �12� as

Gn�r� = Gn�,z� � �2d


�2n2�

exp�− n2��2�E + E1� 2

4�z
��� .

�7�

In this expression �E=0.5772. . . is Euler’s constant, E1�x� is
the exponential integral, and r2=z2+2 with 2=x2+y2. The
reciprocal lattice vectors are defined by qn=nq0=2�n /d
�n=1,2 , . . .�, and �=
K /B is the so-called penetration depth.
The dimensionless index � describing the algebraic decay
z−� along the layer normal and −2� inside the layers is given
by

� = q0
2 kBT

8�
BK
. �8�

It determines the well-known asymptotic power-law behav-
ior along the layer normal,

�qz� � �qz − qn�−�2−�n�, �n = n2� . �9�

There are a finite number of power-law singularities of the
type of Eq. �9�; when for large qn we arrive at �n�2 they are
replaced by cusplike peaks. The observed scaling behavior of
�n on n2 for the first- and higher-order harmonics is one of
the strongest arguments in favor of Caillé’s harmonic ap-
proach. The exponent in Eq. �8� is valid for a perfectly ori-
ented sample. In the other limit of a powder distribution of
orientations an exponent 1−�n applies. In practical cases the
transition between these two limits must be considered.

In a smectic elastomer the underlying elastic network
couples to the layer displacements. Hence, the usual smectic
degeneracy with respect to uniform layer rotations is lost,
and a shear term occurs in the elastic energy. Though the
resulting expression for the free energy as a function of layer
displacements is rather complicated, the essential physics
can be derived from the dispersion law for the elastomer
phonon modes which now features a solidlike elastic energy
proportional to an overall square power �q2 �27�. As a result
the fluctuation behavior can be described by

�u2�r�	 =
kBT

�d
C5
�B�

, �10�

where B�and C5
� are renormalized bulk compression and

shear moduli, respectively. The expression is similar to Eq.
�3�, indicating suppression of the Landau-Peierls instability.
This can lead to reestablishment of true long-range order,
even though the translational order is still 1D, like in a non-
cross-linked smectic polymer �26,27�.

So far, the cross links—pinning the smectic layers in a
number of points—were not supposed to alter the smectic
density wave. However, the cross links are also expected to
disturb the layer structure itself, which effect will become
more important with increasing concentration. A preferential
reduction of the smectic density around a cross link can be
modeled by a local random field that adjusts the phase of the
smectic density wave �29�,
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FRF = �
i

����Ri��cos�q0�zi� − u�Ri�� . �11�

Here ��r� is the smectic order parameter and Ri the position
of the ith cross link. This problem has been extensively in-
vestigated for quenched disorder �defects fixed in time and
space� by group renormalization methods �22,23� as well as
by replica symmetry breaking �8,29�. The results predict that
even arbitrary weakly quenched disorder should destroy the
1D smectic order. The problem has been approached experi-
mentally using highly porous silica aerogels or hydrophilic
aerosils as a source of quenched disorder �5,19–21�. The ex-
periments show that even a very low density of aerogels
and/or aerosils destroys the 1D smectic order that persists
only locally on a macroscopic length scale ��T��100 nm,
the x-ray correlation length. This length is not characteristic
for the aerogel structure—as would be the case for a cutoff in
standard porous materials—but results from the competition
between the randomizing effect of the defect network and the
smectic elastic field. Thus, there is no distinct Sm-A phase
and nematic–smectic-A transition in such a system. In the
smectic elastomers considered here the situation is rather dif-
ferent because the cross links are not rigidly frozen defects,
but consist of flexible chains embedded in the slowly fluctu-
ating elastomer gel.

B. Semiphenomenological model

In a real nonideal smectic system in addition to the cor-
relation function Gn� ,z� various other effects contribute to
the x-ray line shape. For a conventional smectic liquid crys-
tal these are in principle well known and can be written in
terms of the intensity I�q� as

I�q� � d3rGn�,z�H�,z�F��R�x,y,z�exp�i�q − qn� · r� .

�12�

In this equation H� ,z� describes finite-size effects, F�� rep-
resents the effect of the mosaic distribution of the sample,
and finally R�x ,y ,z� is the instrumental resolution function.
We shall first summarize how these effects can be treated,
following largely Ref. �33�. Then we discuss how harmonic-
dependent strain—which in a phenomenological approach is
the hallmark of cross linking—can be incorporated into I�q�.

In practice the stacking of smectic layers is limited: the
maximal domain size layers is of the order of some tens of
�m. This brings us to the second factor in Eq. �12�, H� ,z�.
Let us assume that the domain sizes along and perpendicular
to the layer normal are independent. The finite size of each
domain m will affect the expression for the scattered inten-
sity via an additional factor Hm� ,z�, which should be aver-
aged over all domains to give the effective finite-size contri-
bution H� ,z�. Let us assume that Hm� ,z� corresponds to a
domain with dimensions Lx�Ly �Lz and sharp boundaries.
Then its Fourier transform has the well-known form

Hm�q� + qn� = �
i=1

3
sin2�qi�Li/2�

�qi�Li/2�2 , �13�

which corresponds in r space to a triangle 1− �z� /L for each
dimension. Hence, for this situation Hm� ,z� can be used.

If the elastomer consists of domains of different size or
the boundaries are not sharp, we can follow the Warren ap-
proximation �34� for finite lattice sums leading to Gaussian
functions

H�,z� � H��H�z� = exp�− ��/L�2 − ��z/Lz�2� . �14�

The distribution and magnitude of the domains along the
layer normal as expressed in H�z� are crucial for analysis of
the line shape along the layer normal. The in-plane contribu-
tion depending on L is less important. In fact it adds up with
the contribution from the mosaic distribution and will be
incorporated later. Depending on the specific situation, in
particular the nature of the topology and the related defects,
the domain-size distribution in H�z� could become highly
inhomogeneous with an associated probability function
PH�L /L0� with characteristic length L0. Generally this means

H�z� = 
0

� dL

L0
PH�L/L0�Hm�z� = 

�z�

� dL

L0
PH�L/L0��1 −

�z�
L
� .

�15�

The following normalized probability function for the
domain-size distribution has been chosen, which seemed
plausible because of the stochastic nature of the domain for-
mation,

PH
��L/L0� =

2�

��1 + 1/�2����L2

L0
2��

exp�− �L2/L0
2��� . �16�

For this formula L0 determines the most probable domain
size �first derivative equals zero�. For the specific cases
�=0.5 and �=1.0, Eq. �16� reads as

PH
0.5�L/L0� =

L

L0
exp�− L/L0� , �17�

PH
1.0�L/L0� =

4

�

L2

L0
2exp�− L2/L0

2� . �18�

As we see PH
0.5�L /L0� describes an exponential decay for

domain sizes after averaging and a linear growth for small
sizes. This distribution is very broad �solid line in Fig. 3�; the
same behavior has been obtained for a description of the
distribution of end points of polymer brushes near an inter-
face. PH

1.0�L /L0� �dashed line in Fig. 3� does result in a some-
what complicated form with a Gaussian as leading term;
hence it is relatively narrow. Finally for large � values
�strongly compressed Gaussian� Eq. �16� is close to a � func-
tion �dotted line in Fig. 3�. We note that similar approaches
have been used in powder diffraction to describe the disper-
sion of grain sizes �see �35�, and references therein�.

When calculating the finite-size contribution, averaging of
Eq. �15� gives after some algebraic operations
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H��z� = exp�− � z2

L0
2��� 1

��1 +
1

2�
�

�
1

�

exp�− � z2

L0
2��

��2� − 1�� �z�
L0

d� . �19�

For �=0.5 this reduces to an exponential decay �see Fig. 4�

H�z� = exp�−
�z�
L0
� .

For other � values and �z��L0 the asymptotic behavior is as
follows:

H��z� � exp�− � z2

L0
2���� �z�

L0
�1−2�

.

Restricting ourselves to the leading term we arrive at a
stretched Gaussian function that can be written as

H�z� = exp�−
���z�2�

2�
� . �20�

As illustrated in Fig. 4, a Gaussian function �obtained for
�=1� is closest to a distribution of triangular domains of
well-defined size. The situation 0.5���1 can be described
as a stretched Gaussian or equivalently a compressed expo-
nential. Finally ��0.5 corresponds to a stretched exponen-
tial.

In the structure factor the pair-correlation function is con-
voluted with the finite-size effect. The result is illustrated in
Fig. 5. The correlation function dominates at small z values
leading to the asymptotic power-law equation �9� for the
structure factor at large q values. In the vicinity of a recip-
rocal lattice vector the finite-size contribution dominates, re-
sulting in a Gaussian→Lorentzian line shape for a � varia-
tion 1→0.5. If the domains are relatively large with about
the same size �see Fig. 5�a�� we can expect pronounced al-
gebraic tails in the x-ray line shape. For smaller-size domains
clear deviations from the Caillé correlation will occur al-
ready at small z values. This is also the case for higher har-
monics and/or for large � �compare Fig. 5�b� with Fig. 5�a��,

especially if � is close to 0.5 �approaching a Lorentzian�. In
principle such effects can obscure the asymptotic power-law
behavior of the line shape. Nevertheless, even then the Caillé
correlation function plays an important role in determining

FIG. 3. Model domain size distributions. Full line corresponds
to a distribution resulting in exponential decay ��=0.5�, dashed line
to a distribution resulting in a Gaussian ��=1.0�, dotted line to a
distribution close to a � function ��=50�.

FIG. 4. �Color online� Finite-size contributions to the line shape
in a linear �a� and a double logarithmic plot �b�. From inside to
outside: domains with sharp boundaries; Gaussian ��=1.0�;
stretched Gaussian ��=0.7�; dashed-dotted line, exponential ��
=0.5; Lorentzian in q space�.
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FIG. 5. �Color online� Model profiles for the first-order ��a� �
=0.12� and second-order ��b� 4�=0.48� x-ray peaks for different
mosaic distributions. From top to bottom: �=0.5,0.1,0.05,0.005.
Finite-size contribution fixed to 
qz=0.01 nm−1 �corresponding
domain size 0.6 �m�.
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the large-q tails of the line shape, especially for the higher-
order peaks.

So far we considered a perfectly aligned sample, but in
practice the normal’s to the smectic layers are distributed
around their average value. This mosaic distributions can be
described by a Gaussian with a characteristic width �mos
leading to the additional factor F�� in Eq. �12�. The mosaic
factor can be easily calculated for a relatively narrow distri-
bution �33�,

F�� = exp�− �qn�mos/4�2� . �21�

Assuming the distributions of the layer normal’s and of the
finite domain sizes to be independent, the total in-plane ef-
fect can be combined into

F��H�� → exp�−
���2

2
� . �22�

Though the mosaic effect is dominant, when fitting the total
line shape an in-plane FWHM can result that is slightly
larger than the experimentally measured mosaic distribution.

The mosaic distribution sets a characteristic wave vector
qc=�qn

2�mos
2 /4 �33� that determines its effect on the line

shape. For a small mosaic distribution �up a few degrees� the
overall effect consists of tail rising and a slight increase of
the FWHM, especially for the higher harmonics �see Fig. 5�.
In this case the characteristic wave number qc is well inside
the region limited by the finite domain sizes �
qz�. As a
consequence a clear asymptotic slope 2−n2� can be ob-
served. For a mosaic distribution around 10°, corresponding
to the situation qc�
qz, one notes a pronounced deviation
from the asymptotic slope �upper lines in Fig. 5� and a less
pronounced asymptotic region 1−n2�. Figure 6 indicates
that typically a mosaic distribution affects all the diffraction
orders mostly in the intermediate q region. For a large mo-
saic distribution the effect will extend to large q values and
the Gaussian approximation used so far should be extended
with next antisymmetric terms and further.

Finally there are still limitations due to measuring appa-
ratus, which means that the intensity should be convoluted
with the resolution function R�x ,y ,z�. Because of the experi-
mental choices made so far, in most cases this point can be
disregarded. Otherwise, the resolution function in the x and
the y direction can be well approximated by Gaussians.
Along the layer normal �z direction� a fit can be made to the
direct beam profile as measured in q space, usually by the
sum of Gaussian and Lorentzian functions, which is subse-
quently Fourier transformed to R�z�. Hence, we can write

R�x,y,z� = exp�−
��xx�2

2
−

��yy�2

2
�R�z� , �23�

which reads in cylindrical coordinates as

R�x,y,z� = exp�−
��x�2

2
−

��y
2 − �x

2�2 sin2 �

2
�R�z� .

As the resolution along the x axis is negligible small �see
Sec. II�, �x�� and denoting ��

2 ��y
2−�x

2 we arrive at

R�x,y,z� = exp�−
��� sin ��2

2
�R�z� . �24�

Up to now the discussion has been perfectly general. The
specific element to describe the cross linking in smectic elas-
tomers relates to effects induced by the internal strain.
Around the cross links, layer displacements can occur or
other types of defects may be generated that are not small
anymore in comparison with the layer spacing. Strain-
induced broadening of x-ray peaks is well known in various
fields �36–38�. Generally two effects contribute to x-ray peak
broadening: the finite size of the crystalline or smectic do-
mains and nonuniform strain within the domains induced by
lattice defects. The strain broadening of a diffraction peak
leads approximately to a linear increase of 
qz with har-
monic number n, while the size effect does not depend on it.
Hence, the measured FWHM can be written in the following
way �dropping for convenience the index z�:


qexpt
2 = 
qsize

2 + n2
q�
2 + 
qres

2 . �25�

The experimentally measured FWHM is larger than the real

qsize because of a strain-induced contribution 
q�. The res-
olution is added to Eq. �25� for completeness but can usually
be disregarded. A critical discussion of these effects has been
given in Ref. �39�. The strain-induced contribution to the line
shape I�q� can be written as

Hn
��z� = exp�−

�n��z�2

2
� . �26�

Now we are in a position to evaluate the intensity equa-
tion �12� for the most relevant case—scattering normal to the
layers. This leads to the expression

I�q� � d3rGn�,z�H�,z�Hn
��z�F��R�x,y,z�exp�i�q − qn�z� .

�27�

Substituting all contributions, the intensity I�q� can be writ-
ten in cylindrical coordinates � ,� ,z� as
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FIG. 6. �Color online� Model profiles for three harmonics for
�=0.06 �a� and �=0.12 �b� and two different mosaic distributions.
Solid lines, first order; dashed lines, second order; dotted lines, third
order. Top lines, �=0.005; lower lines, �=0.05. Finite-size con-
tribution fixed to 
qz=0.01 nm−1 �corresponding to 0.6 �m�.
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I�q� � 
−�

�

dz
0

�

d
0

2�

d�Gn�,z�exp�−
���z�2�

2�

−
�n��z�2

2
�exp�−

���2

2
�exp�−

��� sin ��2

2
�

�R�z�exp�i�q − qn�z� . �28�

After some algebraic operations we finally arrive at

I�q� � 
0

�

dz cos��q − qn�z�exp�−
���z�2�

2�

−
�n��z�2

2
�R�z�

0

�

dGn�,z�exp�−
���2

2

−
����2

2
�I0� ����2

2
� , �29�

in which I0 is the modified Bessel function of zero order. We
used the final expression �29� for fitting the data. Over the
whole range of q values the line shape is strongly affected by
the contribution of the stretched Gaussian. The effect of the
degree of stretching �decreasing value of �� is obvious in the
tails of the peaks �Fig. 7�a�� but is diminished by the pres-
ence of a Gaussian term in the resolution function. From Fig.
7�b� we note that the stretching suppresses for all harmonic

orders a clear transition from finite-size effects �central part�
to Caillé tails. When for large values of 
qz the stretched
Gaussian dominates over the other factors, the difference be-
tween first and second harmonic is small, especially for the
initial decades of intensity.

IV. RESULTS

In the following series of figures the x-ray line shapes of
the various harmonics of the different samples will be pre-
sented in some detail. We shall systematically give combina-
tions of two figures: first a conventional x-ray peak �intensity
I vs qz� is shown with usually three decades of intensity
displayed logarithmically. In addition a double logarithmic
figure is given in which �q−qn� is displayed horizontally, thus
emphasizing the behavior of the tails.

We studied homopolymer I and elastomer I for a volume
fraction x=0.05 of cross-link V1, and homopolymer II and
elastomer II for x=0.1, 0.15, and 0.20. In addition elastomer
II has been investigated with the flexible cross-link unit V1
replaced by the stiffer cross-link V8. The x-ray scattering
from homopolymer I shows one and from homopolymer II
shows two harmonics originating from the smectic layering.
The first-order intensity profiles are displayed in Fig. 8. The
characteristic features are a central plateaulike region at
small deviations from qn due to the finite size of the smectic
domains, and a power-law behavior �qz−qn�−2+�n at larger
distances. The FWHM of the quasi-Bragg peaks is not reso-
lution limited and the central part can be well described by a
Gaussian. For the first-order peaks this indicates smectic do-
mains along the layer normal with a finite size L�0.7 �m
for homopolymer I and 0.6 �m for homopolymer II. Away
from the center of the peaks, algebraic decay is observed
with an exponent �n /n2=�=0.15�0.02, similar as reported
for other smectic polymers �17�. Intensity profiles for two
harmonics of elastomer I for x=0.05 are shown in Fig. 9. The
increase of the exponent �n with n is well described by the
scaling law �n /n2=�=0.17�0.01. The FWHM now leads to
a finite size L�3.4 �m, appreciably larger than for the ho-
mopolymer. The results for system I are summarized in Table

FIG. 7. Model profiles for �=0.12 and 
qz=0.01 nm−1

�L=0.6 �m�. �a� First order for different values of �. From top to
bottom: �=0.5; �=0.7; �=1.0. �b� Various orders for �=0.7.
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FIG. 8. �Color online� X-ray line shapes of the homopolymers I
and II; the dotted line indicates the direct-beam profile. �a� Normal-
ized intensity. �b� Double logarithmic plot of the right-hand side;
the full lines correspond to 2−� with �=0.15�0.02.
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I. Results for higher cross-link densities have been obtained
for elastomer II; they are displayed in Figs. 10–13 and sum-
marized in Table II. The latter results have been fully fitted
using Eq. �29�. To illustrate the transition we also made
simple fits to the central part with all contributions set to 1
except the finite size. The latter was represented by the
stretched Gaussian of Eq. �20� constrained to give the correct
experimental FWHM. These results are displayed in Figs. 14
and 15 for cross-links V1 and V8, respectively.

Figure 10 shows the general features for x=0.1 and
x=0.15. For x=0.15 the tails of the first-order and second-
order peak do somewhat overlap, which complicates the
analysis. Figure 11 shows three orders of diffraction for
x=0.1. Interestingly the peak width 
qz increases about lin-
early with the harmonic number n �see Table II�. The experi-
mental FWHM of the first-order peak indicates a domain size
L�1.3 �m, still somewhat larger than for the homopoly-
mer, but clearly smaller than for x=0.05. In the tails of the
peak, algebraic decay is nicely preserved with �n /n2=�
=0.16�0.01, essentially the same scaling as for x=0.05.
With increasing cross-link concentration the transparency of
the samples decreases, which is also expressed by a larger
mosaic distribution and fewer higher harmonics. For
x=0.15 two orders of diffraction are observed as displayed in
Fig. 12. The algebraic decay of the positional correlations is
still preserved with ��0.15�0.01, but it is partly masked
by a substantial broadening of the peak along qz and by the
increased mosaic spread. The FWHM of the central Gaussian
of the first harmonic indicates smectic domains as small as

L�0.6 �m. In Fig. 13 the remaining first harmonic for
x=0.2 is compared with the ones for the other cross-link
densities. It is strongly broadened both along qz �domain size
about 100 nm� and along qx �mosaic distribution�. From
Table II we note a systematic increase of the peak width
along qz both with increasing cross-link density and with the
harmonic order. In Fig. 13 an additional result is included for
15% of the stiff cross-link V8, which behaves as anticipated
for a concentration of the flexible cross-link V1 larger than
20%. Finally in Table III full data are given for 10%, 12.5%,
and 15% of cross-link V8, which thus provides a continua-
tion of the results observed for cross-link V1.

V. DISCUSSION

Let us first consider Table II in some detail. At small
cross-link concentration x�0.05, the finite size of the smec-
tic domains is from 4 to 5 times larger than in the corre-
sponding homopolymer. Evidently the elastomer network en-
hances the stability of the layered structure in agreement
with the predictions of layer pinning theory, Eq. �10�. How-
ever, within the domains the system still shows slow �alge-
braic� decay of the positional correlations. With increasing
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FIG. 9. �Color online� X-ray line shapes of elastomer I in a
linear �a� and a double logarithmic plot �b� for a cross-link density
x=0.05. The lines in the wings correspond to a slope 2−n2� with
�=0.17�0.01 and the central line to the Gaussian region. Sepa-
rately a full line with a slope −2 is given; the dotted line indicates
the direct beam.

TABLE I. Summary of smectic layer peak results for elastomer I and the flexible cross-link V1.

Cross-link Harmonic d�0.02 
qz Domain size Mosaic

concentration x order n �nm� �10−3 nm−1� L ��m� spread �deg�

0 1 2.78 8.8 0.71 1.7

0.05 1 2.88 2.4 3.4 0.9

0.05 2 2.6 1.3

FIG. 10. Overview of x-ray line shapes of elastomer II for x
=0.1 �a� and x=0.15 �b�.
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concentration of cross links, above x�0.1 the disorder
gradually takes over as indicated by broadening of the x-ray
peak along the layer normal �Fig. 13�. However, in addition
the line shape also varies as illustrated in Figs. 14�a�–14�c�.
Going from 10% via 15% to 20% of cross-link V1 the cen-
tral line shape changes from approximately Gaussian to close
to Lorentzian. This is nicely expressed by the value of the
exponent of the fitted stretched Gaussian correlation func-
tion, Eq. �20�, that varies from �=0.96�1 �pure Gaussian�
for x=0.1 via �=0.66 for x=0.15 to �=0.59 �already close
to 0.5� for x=0.20. Most importantly this trend is continued
by the results for the stiff cross-link V8 �Fig. 15�. The result
for 10% of the stiff cross-link V8 is close to the situation for
20% of the flexible cross-link V1. As for 10% V8 we find
�=0.51, in fact a fit with variable � cannot be distinguished
anymore from a pure Lorentzian ��=0.5�. Upon increasing
the concentration of V8 the exponent � decreases further.
For 12.5% we find �=0.47 and for 15% we arrive at
�=0.44 corresponding to stretched exponential correlation
functions. At this stage we cannot give a precise interpreta-

tion, but we note that a stretched exponential can be related
to an average over dimensions varying over a broad range. A
compressed exponential �or equivalently a stretched Gauss-
ian� is often in a loose way associated with cooperative be-
havior �see, for example, �40,41��. Summarizing we encoun-
ter a gradual transition from well-distinguishable finite-size
domains �flexible cross links; Gaussian� to an average over a
broad range of sizes that leads first to a Lorentzian �large
density of flexible cross links; medium density of rigid cross
links� and subsequently to a stretched Lorentzian �large den-
sity of rigid cross links� This behavior constitutes a major
theoretical challenge we cannot solve at this stage.
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FIG. 11. �Color online� X-ray line shapes of elastomer II in a
linear �a� and a double logarithmic plot �b� for a cross-link density
x=0.1. Scaling is satisfied with �=0.16�0.01. Separately a full
line with a slope −2 is given; the dotted line indicates the direct
beam.
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FIG. 12. �Color online� X-ray line shape of elastomer II in a
linear �a� and a double logarithmic plot �b� for x=0.15. Scaling is
satisfied with �=0.16�0.01. Separately a full line with a slope −2
is given; the dotted line indicates the direct beam.

FIG. 13. �Color online� First-order diffraction of elastomer II in
a linear �a� and a double logarithmic plot �b� with flexible cross-
linker V1 for x=0.1, 0.15, and 0.2, respectively, and for x=0.15
with rigid cross-linker V8. The dotted line corresponds to the direct
beam. In �b� the dashed lines show the best fit to the data for fixed
�=1.0 �Gaussian finite size�; full lines correspond to the best fit to
Eq. �29�.
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Next we come to the full fit to Eq. �29� of the experimen-
tal line shapes as given in Figs. 11–13. In Figs. 11 and 12 the
asymptotic behavior away from the center of the peak can
still be described by the Caillé limit, Eq. �9�. The theoreti-
cally predicted scaling is well observed with a constant value
�=0.16�0.02 for all V1 cross-link concentrations. Upon
further broadening of the peaks this limit become less clear.
Nevertheless the full fits indicate still an appreciable contri-
bution of the Caillé correlation function. In Fig. 11 for
x=0.1 the first and second order were fitted simultaneously
with �=1.0 and only four additional parameters, �, �, ��,
and ��. The resulting values were used to calculate the third-
order peak, giving an excellent fit �see Fig. 11�. Additionally
we made the best fit to the three first-order diffraction peaks
of the elastomer II and cross-link V1 �red lines in Fig. 13�b��
with �=1.0. For the first order of diffraction we can disre-
gard strain-induced broadening; hence only three adjustable
parameters are left. Increasing the cross-link concentration
tends to change the shape of the central part, although Caillé
tails remain. Apparently for x=0.15 one should not fix �
anymore. In Fig. 12 we present results for this elastomer.
Only two orders of diffraction are observed, but we could
use the results for x=0.1 for � thus reducing the number of
the variables. Finally we fitted the data for high cross-link
densities �results in Table IV�. Although the � values from
full fits deviate slightly from those obtained by a finite-size
fit of the central part only, the gradual transition from �
=1.0→0.5→ �0.5 is essentially the same.

For the higher orders n of the quasi-Bragg peak the width
along qz increases about linearly with n �compare Table II for
10% and 15% cross links�, in agreement with Eq. �25�. In a
simple harmonic description the width of the smectic peaks
would be the same for all different orders of diffraction. As
mentioned in the final part of Sec. III B finite-size broaden-
ing of the x-ray peak does not depend on the order of the
reflection, while the strain effect is proportional to the length
of the scattering vector. Using Eq. �25� we can separate the
two contributions and obtain an average domain size. The
observed strain effect on the width of the quasi-Bragg peaks
in smectic elastomers can be attributed to layer displace-
ments around the cross links �or other types of topological
defects generated in the presence of cross links� that are not
small anymore in comparison with the layer spacing. The
behavior resembles the predictions for an elastic field of dis-
tant dislocations or other topological defects �33�. Similar
possibilities have been discussed for various defect situations
by Krivoglaz �38�.

An important source of nonuniform strain in smectic do-
mains is due to edge dislocations that have been observed in
smectic side-chain polymers by high-resolution electron mi-
croscopy �42�. We expect such dislocations to be generated
in large amounts in smectic elastomers starting from a cer-
tain density of randomly distributed cross links. Such dislo-
cations destroy the algebraic decay of the smectic layer cor-
relations at large distances and lead to a broadening of the
Gaussian-type Bragg peak �33� in dependence of the density
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FIG. 14. �Color online� Central part only of the first-order diffraction of elastomer II with flexible cross-linker V1 for �a�–�c� x=0.1, 0.15,
and 0.2, respectively. From outside to inside: Lorentzian fit; Gaussian; stretched Gaussian with �a�–�c� �=0.96, 0.66, and 0.59, respectively.
The Lorentzian in �c� corresponds to a correlation length of ��45 nm.

TABLE II. Summary of smectic layer peak results for elastomer II with the flexible cross-link V1.

Cross-link Harmonic d�0.02 
qz Domain size Mosaic

concentration x order n �nm� �10−3 nm−1� L ��m� spread �deg�

0 1 2.87 10.1 0.62 1.5

0 2 12 3.3

0.1 1 2.90 5.5 1.3 2.7

0.1 2 10.7 2.8

0.1 3 25.5 3.5

0.15 1 2.92 10.5 0.6 6.3

0.15 2 25.5 6.9

0.2 1 2.92 49 0.12 20
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of dislocations Nd. The width of the peak along qz is inde-
pendent of the domain size and scales as 
qz�n4/3. The
broadening in the transverse direction 
qx�qnNd

1/2L1/4 cor-
responds to an apparent mosaic distribution �=
qx /qn. The
broadening of the mosaic spread with increasing cross-link
density from Table II allows to estimate the relative increase
of the dislocation density Nd��2 /L1/2. Taking L values from
Table II we find that the dislocation density increases by a
factor of about 100 when the cross-link concentration
changes from zero to 20%. Even though these estimates are
very approximate, they do give the right order of magnitude
of multiplication of dislocations. Another obvious reason for
peak broadening along qx is the diminishing finite size with
increasing cross-link density of the domains in the smectic
layer planes. The above factors contribute to the total width
of the smectic peak in the transverse direction.

Though the observed behavior is consistent with the gen-
eral predictions for random quenched disorder, it is remark-
able that the algebraic decay survives up to large cross-link
densities. The analogy might fail because in smectic elas-
tomers the cross links are not fully frozen defects, but consist
of flexible chains embedded in the slowly fluctuating elas-
tomer network. Clearly this makes the situation different
from the type of quenched disorder introduced in aerogel or
aerosil networks. We speculate that starting from a certain
concentration of cross links, defects of higher strength are
generated in a large amount, which causes large displace-
ments of the layers, qu�1. The elastic field of such defects,
for example, dislocation loops, could suppress the Bragg
peaks and lead increasingly to diffuse scattering with a
Lorentzian-type shape.

In conclusion we have used high-resolution x-ray scatter-
ing to determine the positional correlations in smectic elas-

tomers with increasing number of cross links. The smectic
line shapes are described by the Caillé correlation function
convoluted with a finite-size factor represented by a stretched
Gaussian. At small cross-link concentration the elastomer
network enhances the stability of the smectic structure
against layer displacement fluctuations. At higher concentra-
tions a transition to disorder is reflected in the x-ray line
shape by a change in the exponent of a stretched Gaussian
from 1 �simple Gaussian describing finite-size domains� to
0.5 �Lorentzian describing extended short-range correla-
tions�. For a flexible cross link the algebraic decay of posi-
tional correlations survives in domains of decreasing size up
to relatively large concentrations exceeding 15%. The ob-
served broadening of the higher harmonics of the x-ray peak
indicates nonuniform strain within finite-size smectic do-
mains. For a concentration of about 20% the smectic order-
ing is destroyed by the random field of cross links and re-
placed by extended short-range correlations. For a stiff cross
link the smectic layering is lost already at �10% and for
increasing concentration the remaining correlations can be
described by a stretched exponential. A new theoretical con-
cept regarding disordering by a random internal field is
needed which incorporates that in smectic elastomers the de-
fects are cross links consisting of flexible chains embedded
in a fluctuating layered system.
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